�&ǐk�@'bJ�h�ۊL'}T� :��'2�Z#$��n�a��� �>a��`��_3d�Qpt�/�P -��#5�,�M��� �pA:©�q�����NW��ډ�A���� �9nʺج���� �TSM��{J6?7��r�@�\����D��� �׶���s�f�TJj?"��D��`?��̒� b�#�%�C*v�$�{�$����5Ծ�F�s��y�e/8��h-�f�̰&(����Gj�L:U� 2�� ����v�_k����Y��gp,�k�WF�R������_C�R��N@���R�@�ߔ?A�w9���F("iNa-S���Q�o�3tDMLh*�#4k�T/iQ��Y*�G��m����)��8�hBm/�I�,g�ﯖ���Z��}�Cz�q@´��d.����L�ŕ�,��1�Z�܌�: ̪���F+J-'��c�tvJ8��]Q-��b��y �6;*J`r_�d ��'�G ~p��)'�C,�%F��E(��2�k�����lР�z�!�=t ��_�0��f7��� ;�p�|�U �% x. So if x already appears in the list, a.insert(x) will insert just after the rightmost x already there. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 if x < a[mid]: hi = mid else: lo = mid+1 return lo bisect = bisect_right # backward compatibility def insort_left(a, x, lo=0, hi=None): """Insert item x in list a, and keep it sorted assuming a is sorted. If x is already in a, insert it to the left of the leftmost x. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 if a[mid] < x: lo = mid+1 else: hi = mid a.insert(lo, x) def bisect_left(a, x, lo=0, hi=None): """Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e < x, and all e in a[i:] have e >= x. So if x already appears in the list, a.insert(x) will insert just before the leftmost x already there. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 if a[mid] < x: lo = mid+1 else: hi = mid return lo # Overwrite above definitions with a fast C implementation try: from _bisect import * except ImportError: pass